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ABSTRACT

Material variations on an atomic scale enable the quantum mechanical functionality of devices
such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors (QWIPs),
quantum well lasers, and heterostructure field effect transistors (HFETs). The design and
optimization of such heterostructure devices requires a detailed understanding of quantum
mechanical electron transport. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose
quantum device design and analysis tool that addresses this problem. NEMO was combined with
a parallelized genetic algorithm package (PGAPACK) to optimize structural and material
parameters.  The electron transport simulations presented here are based on a full band
simulation, including effects of non-parabolic bands in the longitudinal and transverse directions
relative to the electron transport and Hartree charge self-consistency. Two different numerical
experiments that maximize the fit between experiment and simulation are presented: 1) structural
variations in layer widths and doping concentrations, and 2) variations in the bulk bandstructure
parameters.

INTRODUCTION

The NASA/JPL goal to reduce payload in future space missions while increasing mission
capability demands miniaturization of measurement, analytical and communication systems.
Currently, typical system requirements include the detection of particular spectral lines,
associated data processing, and communication of the acquired data to other subsystems.  While
silicon device technology dominates the commercial microprocessor and memory market,
semiconductor heterostructure devices maintain their niche for light detection, light emission,
and high-speed data transmission.  The production of these heterostructure devices is enabled by
the advancement of material growth techniques, which opened
up a vast design space.  The full experimental exploration of
this design space is unfeasible and a reliable design tool is
needed.

Military applications have similar system requirements to
those listed above.  Such requirements prompted a device
modeling project at the Central Research Laboratory of Texas
Instruments (which transferred to Raytheon Systems in 1997).
NEMO was developed as a general-purpose quantum
mechanics-based 1-D device design and analysis tool from
1993-97. The tool is available to US researchers by request on
the NEMO web site1. NEMO is based on the non-equilibrium
Green function approach, which allows a fundamentally sound
inclusion of the required physics: bandstructure, scattering, and
charge self-consistency.  The theoretical approach is
documented in references [2, 3] while some of the major
simulation results are documented in references [4-6]. This
paper highlights the recent work on genetic algorithm based
device parameter optimization.
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Figure 1: Architecture of a
genetic algorithm-based NEMO
simulation.



QUANTUM DEVICE PARAMETER OPTIMIZATION
USING GENETIC ALGORITHMS

Heterostructure device designs involve the choice of material compositions, layer thicknesses,
and doping profiles. Material parameters such as band offsets, effective masses, dielectric
constants etc. influence the device simulation results in addition to the structural design
parameters.  The full exploration of the design space using purely experimental techniques is
unfeasible due to time and financial constraints.  For example, it takes a well-equipped research
laboratory approximately five working days7 for the growth, processing and testing of a
particular resonant tunneling diode design.  NEMO can provide quantitative4-6 current voltage
characteristics (I-V's) within minutes to hours8 of CPU time for a single set of device and
material parameters.  With this quantitative simulation capability the design parameter space can
be explored expediently once an automated system for the design parameter variation is
implemented.  This paper presents the combination of NEMO with a parallelized genetic
algorithm package (PGAPACK)9 as indicated in Figure 1.  The architecture lends itself to the
optimization of any parameters that enter a NEMO simulation. To evaluate how good a
particular parameter set is, a fitness function must be developed as discussed in the next section.

SIMULATION TARGET AND FITNESS FUNCTION

In this work the RTD is used as a vehicle to study the effects of structural and doping variations
on the electron transport. I-V's of two devices that are part of a well-behaved test matrix of
experimental data published in reference [5] are used as a design target.  The raw I-V data (see
the example in Figure 2) contains a contact series resistance and oscillations in the negative
differential resistance (NDR).  The oscillation in the NDR is attributed to external circuit
effects10 and cannot be simulated within NEMO.  The step-like feature in the NDR is cut out of
the raw data to generate a "clean" set of experimental data.  The contact series resistance can be
estimated from the peak current of a series of nominally identical devices5 with different cross
sections.  The voltage drop over the contact resistance can be subtracted out of the extrinsic
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Figure 2: Generation of the target I-V characteristic of a typical resonance tunneling diode. (a) The extrinsically
measured I-V (solid line) includes a series resistance and oscillations in the negative differential conductance
region (0.32V-0.43V).  The series resistance can be estimated from a series of devices with different cross
sections.  The intrinsic I-V is the target for the optimization (crosses).  (b) Features that enter into the evaluation
of the fitness of simulated data.  Of particular interest are the peak and valley voltage and current and the slopes
close to the peak and the valley.



voltage scale to yield the intrinsic voltage scale (see inset of Figure 2a)
The fitness of the simulated data is measured against such target I-V.  There are four particular
features that are explicitly evaluated for each simulated I-V: peak and valley current and voltage,
and the slope close to the peak and the valley (see Figure 2b).  Differences between the target
and the simulation in these four features and the absolute and relative error for all simulated data
points enter into the fitness function with a weighted average.  The target fitness evaluated
against itself results in a value of 1.  Disagreements between simulation and target result in
fitness values between 0 and 1.

TRANSPORT MODEL

The electron transport simulations are based on a single band model, which incorporates3 effects
of non-parabolic bands in the longitudinal and transverse directions relative to electron transport.
The model parameters are derived from a tight binding sp3s* multiband model. This single band
model captures the relevant transport physics such as complex band wrapping in the barriers and
the non-parabolicity of the conduction band. The computation of the non-parabolic single band
model executes about 60 times faster than the computation of the full band sp3s* model (for
structures considered here).  This dramatic increase in speed allows inclusion of Hartree charge
self-consistency with non-parabolicity in the transverse direction. The double integral in total
energy and transverse momentum to obtain the electron density at each site i (Eq. (1)) is carried
out explicitly2 in the inner loop of the charge self-consistency.  The current density is evaluated
self-consistently with the electron density in the double integration.

n kdk K k E dEi i∝ ∫∫ ( , )      (1)

I kdk T k E f E f E dEL R∝ −( )∫∫ ( , ) ( ) ( )      (2)

SET-UP OF NUMERICAL EXPERIMENT

In the numerical experiment described in Figure 3, five parameters (2 doping
concentrations, N1, N2, and 3 thicknesses, T1, T2, T3) are varied within the genetic algorithm in
order to achieve the best fit to an experimental I-V curve.  The simulation is started from a
random population of 200 parameter sets.  The doping population is logarithmically distributed
around the nominal values by factors of 10 (N1_[1x10 17,1x1019], N2_[1x10 14,1x1016]). The
layer thickness population is uniformly distributed around the nominal value by 10 monolayers
(T1_[1,17] for device 1, T 1_[10,30] for device 2, T 2,T3_[6,26]). In each generation 63 of the
worst genes11 are dropped out of the population and new genes are generated9 from the rest by
mutation and crossover. Mutation allows the parameters to leave the original parameter range.
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Figure 3 Conduction band edge and doping profile of a typical resonant tunneling diode.  The central device
region is typically undoped.  The low doped spacer thickness, the barrier thicknesses and the well thickness are
labeled T1, T2, and T3, respectively.  The low spacer doping and the central device doping are labeled N1 and N2,



SIMULATION RESULTS

Two I-V's from slightly different structures serve as a target of the genetic algorithm
optimization.  Both structures were specified to the grower to have 16 monolayers (ml) of
barriers (T2) and well (T3), no intentional doping in the central device (N2=1x1015 cm-3),
N1=1x1018 cm-3 doping in the low doping spacers, and 3x1018 cm-3 in the high doping contacts
(see Figure 3).  The nominally only difference in the two devices is in the no-doping spacer
length T1 of 7 vs. 20 ml.  The simulation is started from the random populations as described in
the previous section. The genetic algorithm converges for both I-V's to the nominal structure
values, well within the experimental uncertainty as shown in Figure 4.  Again it is found that the
well widths must be increased in the simulation by a few monolayers versus the nominal values
to achieve the best agreement with experimental data5.  Different relative weights will result in
different "optimal" structures as shown in Figure 4b.

FUTURE WORK

This work is the first step to integrate NEMO within a high performance parallel
computational environment.  A desired curve can now be entered as the target of the simulation
and the genetic algorithm is expected to obtain the optimal parameter set. Future work will
utilize this method to analyze the vast material and structure parameter space.  It is planned to
evaluate other optimization techniques such as simulated annealing and directive approaches as
well.  These optimization techniques will be made available within a graphical user interface
which enables the selection of parameters to be varied, the setting of parameter ranges and the
setting of optimization parameters, such as population sizes, and mutation and crossover rules.

SUMMARY

We present the first NEMO simulations driven by a genetic algorithm to optimize
parameters such as layer thicknesses and doping profiles.  The convergence of the initially
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Figure 4: Current voltage characteristics of two different InGaAs/InAlAs resonant tunneling diodes.
The nominal structures have barrier (T2) and well (T3) thicknesses of 16 monolayers (ml), and doping
a doping profile of 1018 cm-3 (N1) and 1015 cm-3 (N2).  The devices (a) and (b) differ nominally in their
no-doping spacer thicknesses (T1) of 7 and 20 ml, respectively.  The solid lines show experimental
data published in reference [5], where the noise in the valley current region was eliminated.  The
curves are labeled by the 5 parameters N1_N2_T1_T2_T3 .



random population of devices to experimental specified device parameters is demonstrated for
two different devices. The transport simulation are performed within a novel non-parabolic
single band model which is derived from a more complete sp3s* tight binding model.  This
single band model captures the relevant transport physics such as complex band wrapping in the
barriers and the non-parabolicity of the conduction band in the longitudinal and transverse
transport direction.  These simulations are performed for the first time in Hartree charge self-
consistency.
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